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Up to now, more and more online sites have started to allow their users to build the social relationships.
Take the Last.fm for example (which is a popular music-sharing site), users can not only add each other as
friends, but also join online interest groups where they shall meet people with common tastes. Therefore,
in this environment, users might be interested in not only receiving item recommendations (such as
music), but also getting friend suggestions so they might put them in the contact list, and group recom-
mendations that they could consider joining. To support such demanding needs, in this paper, we pro-
pose a unified framework that provides three different types of recommendation in a single system:
recommending items, recommending groups and recommending friends. For each type of recommendation,
we in depth investigate the contribution of fusing other two auxiliary information resources (e.g., fusing
friendship and membership for recommending items, and fusing user-item preferences and friendship for rec-
ommending groups) for boosting the algorithm performance. More notably, the algorithms were devel-
oped based on the matrix factorization framework in order to achieve the ideal efficiency as well as
accuracy. We performed experiments with two large-scale real-world data sets that contain users’ impli-
cit interaction with items. The results revealed the effective fusion mechanism for each type of recom-
mendation in such implicit data condition. Moreover, it demonstrates the respective merits of
regularization model and factorization model: the factorization is more suitable for fusing bipartite data
(such as membership and user-item preferences), while the regularization model better suits one mode
data (like friendship). We further enhanced the friendship’s regularization by integrating the similarity
measure, which was experimentally proven with positive effect.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

With the rapid growth of the internet and overwhelming
amount of information and choices that people are confronted
with every day, recommender systems have been widely devel-
oped with the purpose of supporting users to make effective deci-
sion in the online environment. In particular, given users are now
commonly retained in a multi-resource environment, they do not
seek for only one kind of recommendation. For example, in Last.fm
which is a popular music sharing website, a user can be associated
with different types of social relations: s/he may create a friend list
(e.g., establishing the friendship) which is in nature a bidirectional
relationship as two parties should approve this connection; s/he
could join in an interest group, to build membership with others
whom s/he may not know in the offline life but with common
ll rights reserved.
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interests. Accordingly, users in such environment are likely to be
not only interested in receiving music recommendations, but also
getting friend & group recommendations.1

Though in the past years researchers have proposed different
methods to address how to recommend items, groups or friends,
these works were mostly done separately (that is, each mainly fo-
cuses on one type of recommendation only; see related works in
Section 2). Few have actually combined them in a unified frame-
work, and more meaningfully, discovered the mutual contribution
of the three information resources: user-item preferences, user-
group membership and user-user friendship. Indeed, due to the data
sparsity phenomenon that is commonly occurring in current online
systems, purely considering one type of resource to generate rec-
ommendation for itself (such as only involving user-item records
1 The group recommendation described in this paper is different from the concept
described in Chen, Cheng, and Chuang (2008b) and Baltrunas, Makcinskas, and Ricci
(2010). Their focus was on recommending items to a group of users, whereas ours is
on recommending groups to one target user.
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to produce item recommendation) cannot effectively help inactive
users (who have only expressed few ratings or interacted with few
items). To address this problem, fusing other types of information
resources should be essentially helpful (Liu & Lee, 2010). Particu-
larly, among others, user-group membership data can be a direct
indicator of the user’s specific interest in a group’s topic. However,
it has been rarely investigated as a potential auxiliary resource in
existing works. Few attentions have also been paid to augment
the group recommendation’s accuracy.

Thus, in this manuscript, we aim at addressing existing limita-
tions and emphasizing the triangle relationship among the three
types of recommendation: items, groups and friends (see Fig. 1).
The ultimate goal was to unify them into a generalized framework.
In particular, we chose the matrix factorization (MF) as the basis
mechanism due to its well-recognized high algorithm efficiency
and accuracy (Koren, Bell, & Volinsky, 2009) (the detailed rationale
will be given in Section 3.1). In the experiment, we have compared
different MF-based fusion approaches and in-depth explored how
different data resources could be mutually contributive to each
other for producing recommendation. More notably, we have
investigated the fusion performance in a more realistic, typical
data condition: it is only with users’ implicit interaction records
with items. As a matter of fact, many recommender methods that
have been proposed so far stand on the assumption that users’ ex-
plicit ratings are available (Koren et al., 2009; Ma, Zhou, Liu, Lyu, &
King, 2011). However, in reality, explicit feedbacks from users are
not so easily obtained (Yang, Lee, Park, & Lee, 2012). Thus, a more
practical solution might be to derive user preferences from their
implicit behavior, such as users’ clicking and interaction records
(Hu, Koren, & Volinsky, 2008). Unfortunately, in such implicit data
condition, by far few studies have been done to incorporate social
relations to boost the recommendation. We were hence driven to
develop effective fusion methods for dealing with the implicit data.

Below we summarize our major contributions in terms of each
type of recommendation:
1.1. Recommending items

This is the main objective of traditional recommender systems,
i.e., to recommend a set of top-N items (e.g., music, book, movie)
that users might be interested in. Up to now, different recommen-
dation algorithms have been proposed to predict items for users,
such as collaborative filtering (Adomavicius & Tuzhilin, 2005), ma-
trix factorization (Hu et al., 2008; Koren et al., 2009; Salakhutdinov
& Mnih, 2008b), content-based analysis (Pazzani & Billsus, 2007),
latent semantic models (Hofmann, 2004), latent Dirichlet alloca-
tion (Blei, Ng, & Jordan, 2003), and so on. However, as mentioned
before, some challenging research questions still remain unsolved:
(1) how to effectively incorporate membership, in addition to friend-
ship, into the process of recommending items, so as to fulfill their
respective values? (2) Could the fusion take significant effect when
there are only users’ implicit interaction records? The answer to this
question could well address the concern of how to choose appro-
Fig. 1. Triangle relationship among item, friend and group recommendations.
priate fusion algorithm in the implicit data condition. (3) How
would the fusion effect be, when there are few of users’ interaction
data (i.e., the data sparsity phenomenon)? The answer to this ques-
tion could help identify whether the fusion of social relations, via
the proper modeling, could in practice solve the cold-start
problem.

To find solutions to these questions, we have first analyzed two
types of relation data’s property: one mode relation (e.g., friend-
ship) and bipartite relation (e.g., membership) (see Section 3.2).
In terms of algorithm development, we have chosen the matrix fac-
torization technique as the basis mechanism (see Section 3.1). Spe-
cifically, we have proposed utilizing collective matrix factorization
to fuse membership, and adopting regularization model for fusing
friendship. Moreover, we have integrated the similarity measure
into the friendship regularization in order to further enhance its
prediction power. The experimental results not only demonstrated
the proposed algorithms’ performance, but also identified the
superior effectiveness of membership against friendship. The sim-
ilarity-integrated regularization model also results in positive
outcome.

1.2. Recommending groups

Besides recommending items, it is interesting to recommend to
the target user a list of communities (e.g., ‘‘interest groups’’) that s/
he might be interested in joining. Membership in nature involves
two types of entities: users and groups, which reflect users’ partic-
ipation in groups based on their common tastes. In recent years,
some efforts have been devoted to make community recommenda-
tion (Chen et al., 2009b; Vasuki, Natarajan, Lu, & Dhillon, 2010), but
the proposed methods leveraged only one kind of data: the user-
group relations. To the best of our knowledge, few works have
exploited the impact from fusing other information resources, such
as user-item preferences and friendship, for enhancing the group
recommendation. Actually, the three research questions that were
raised for item recommendation are also valid for the group rec-
ommendation. Thus, to fill in the vacancy, we have explored differ-
ent fusion methods, and experimentally identified the superior
performance of fusing friends via the similarity-enhanced regular-
ization mechanism, and the effect of the collective factorization
model for fusing user-item preferences. The item preferences are
additionally found more effective than friendship, and the two re-
sources’ combination gives the best result.

1.3. Recommending friends

The third issue that we have attempted to resolve was to en-
hance friend recommendation by incorporating user-item prefer-
ences and membership data. Although lately there are increasing
interests in generating friend recommendation due to the popular-
ity of social network (Jamali, Huang, & Ester, 2011; Yang et al.,
2011), few works have measured the performance when other data
resources are leveraged into this process. Moreover, the related
works have mainly employed graph-based techniques which are
nevertheless with high time complexity. Because matrix factoriza-
tion (MF) has the inherent advantage of reducing the algorithm’s
cost (Hu et al., 2008; Koren et al., 2009), we have particularly
investigated and compared various MF-based fusion approaches.

In the following, we will first introduce related works and indi-
cate their limitations (Section 2). We then explain the rationale be-
hind our choice of fusion mechanism, and analyze the typical
property of involved data (Section 3). The algorithms’ details for
the three types of recommendation (items, groups and friends) will
be respectively presented in Sections 4–6. We then introduce the
experiment setup, that includes the description of dataset and
the definition of evaluation metrics (Section 7). The experimental



L. Chen et al. / Expert Systems with Applications 40 (2013) 2889–2903 2891
results are then analyzed with respect to each type of recommen-
dation, which show the comparison of various fusion methods
(Section 8). At the end, we summarize the major findings and draw
the conclusion (Section 9).
2. Related work

According to the type of recommendation that each related
work emphasizes, we classify them into three branches: item rec-
ommendation, group recommendation and friend recommendation.
In the following, we introduce the state-of-the-art of each branch.

2.1. Item recommendation

In order to solve the ‘‘cold-start’’ problem and the sparsity of
user-item ratings, Jamali and Ester (2009) proposed a random walk
model that combined the trust network so that indirect neighbors
were also considered. The experiment on the Epinions dataset
showed that the proposed approach outperforms standard collabo-
rative filtering algorithm. Jamali and Ester (2010) utilized the trust
relationship under the matrix factorization model, which was called
Trust-MF. In Ma, Yang, Lyu, and King (2008), authors proposed a fac-
tor analysis approach based on the probabilistic matrix factoriza-
tion, that took into account both users’ trust network information
and rating records. The experiment showed that their method per-
forms more accurate especially when users made few or no ratings.

However, given the difficulty of obtaining actual trust relations
in the real online environment, some researchers have attempted
to utilize friendship data as they can be more easily obtained from
social networking sites (Groh & Ehmig, 2007). A typical work is
(Konstas, Stathopoulos, & Jose, 2009) which adopted the generic
framework of Random Walk with Restart to model the friendship
and social annotation (tagging) in a music track recommendation
system. Their experiment showed that the graph model benefits
from the additional information embedded to increase recommen-
dation accuracy. In Yang et al. (2011), the authors showed that the
information contained in interest networks (i.e., user-service inter-
actions) and friendship networks are highly correlated and mutu-
ally helpful. They concretely proposed a friendship based interest
propagation (FIP) mechanism which devised a factor-based random
walk model to recommend both online services and friends to users.
The experiment demonstrates that FIP achieves higher performance
regarding both interest targeting and friendship prediction, than
systems that use only one source of information. In Jamali et al.
(2011), authors proposed a generalized stochastic block model
(GSBM), by which both the ratings of items and the friendship can
be predicted. Their experiment indicates that although GSBM did
not outperform all compared partners in respect of rating predic-
tion, its performance is comparable to the state-of-the-art methods,
and it is able to handle multiple tasks. In Ma et al. (2011), the
authors proposed two social regularization terms for defining the
matrix factorization objective function, with the goal of effectively
fusing the friendship information into item recommendation.

However, few attentions have been paid to study the impact of
membership data, as another type of auxiliary information, on
augmenting the item recommendation’s accuracy. As users’ affilia-
tion with interest groups can more likely reflect their common
preferences over items, we believe the membership could be stron-
ger indicator than friendship in terms of enhancing the item
recommendation.

2.2. Group recommendation

Regarding group recommendation (or called affiliation or
community recommendation in Vasuki et al. (2010)), there are
relatively fewer works. In Vasuki et al. (2010), two models were ex-
plored, namely the Graph Proximity Model (GPM) and the Latent
Factors Model (LFM), to generate community recommendation to
users by taking into account their friendship and affiliation net-
works. Their empirical results indicated that GPM turns out to be
more effective and efficient. Chen, Zhang, and Chang (2008a) pro-
posed a collaborative filtering method, called Combinational Col-
laborative Filtering (CCF), to perform personalized community
recommendation. It concretely applied a hybrid training strategy
that combines Gibbs sampling and Expectation–Maximization
algorithm for fusing semantic info, such as the description of com-
munities and users. The experiment on a large Orkut data set dem-
onstrated that the approach can more accurately cluster relevant
communities given their similar semantics. In Chen et al.
(2009b), the authors investigated two approaches to generate com-
munity recommendation: the first adopted the Association Rule
Mining technique (ARM) to discover associations between sets of
communities; the second was based on Latent Dirichlet Allocation
(LDA) to model user-community co-occurrences with latent as-
pects. The experiment on Orkut data indicated that LDA consis-
tently outperforms ARM when recommending four or more
communities, while ARM is slightly better when recommending
up to three communities. Spertus, Sahami, and Buyukkokten
(2005) presented an empirical comparison of six similarity mea-
sures for recommending online communities to members in Orkut
social network. However, these related works did not explore the
potential of fusing other auxiliary resources, especially user-item
preferences, for increasing the accuracy of group recommendation.

2.3. Friend recommendation

In Chen, Geyer, Dugan, Muller, and Guy (2009a), authors evalu-
ated several friend recommendation algorithms in an enterprise
social networking environment through a user survey (with 500
users) and a field study (with 3000 users). They found that algo-
rithms based on social network information can reveal more
known contacts for users, while algorithms that considered the
similarity between user-created content were more useful in dis-
covering new friends. Guy, Ronen, and Wilcox (2009) proposed
the ‘‘Do You Know?’’ (DYK) widget, by which people recommenda-
tions were generated on an aggregated social network that con-
tains various resources across the organization. Their evaluation
showed that people recommendation can be effective in increasing
the number of social connections. In Symeonidis, Tiakas, and
Manolopoulos (2010), a so called FriendTNS algorithm was pro-
posed, that recommends new friends to registered users based
on both local and global graph features. Backstrom and Leskovec
(2011) developed an algorithm based on Supervised Random
Walks, that was targeted to leverage the information from the net-
work structure to predict the occurrence of links between users
and was successfully tested on Facebook dataset. In Gou, You,
Guo, Wu, and Zhang (2011), authors proposed a novel visual sys-
tem, called SFViz (Social Friends Visualization), to support users
to explore and find friends interactively, by leveraging both seman-
tic structure of activity data and topological structure of social net-
works. The experiment on Last.fm data indicated that the system
can enhance users’ awareness of their social networks under differ-
ent interest contexts, and help users to seek potential friends who
share similar interests in an informative way. Zheng, Zhang, Ma,
Xie, and Ma (2011) reports a personalized friend and location rec-
ommender for the geographical information system (GIS) on the
Web. A framework, referred as a hierarchical-graph-based similar-
ity measurement (HGSM), was proposed to effectively measure the
similarity among users based on their location histories. Based on
GHSM, the content-based method and the user-based collaborative
filtering algorithm were applied to provide not only the item rec-
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ommendation but also the friend recommendation. A similar work
that considered users’ mobile proximity network was proposed by
Quercia and Capra (2009). The proximity records were processed
based on the geographical proximity and link prediction, which re-
sulted in a personalized and automatically generated list of people
whom the target user may know.
2.4. Limitations of related works

Table 1 summarizes several typical works from two aspects: the
auxiliary information resource(s) that they fused; and the type of
recommendation(s) they emphasized. It can be seen that: (1) as
for works that focus on recommending items or friends, few of
them have considered utilizing membership information; (2) few
have combined all three types of recommendation in a unified
framework; (3) few have been targeted to deal with implicit
user-item preference data. The work most similar to ours is (De
Meo, Nocera, Terracina, & Ursino, 2011), which recommends to
the active user a set of similar users, resources and social commu-
nities in a cross-network setting. This method considered both ex-
plicit relationships among users and implicit ones that connected
users given their similar interests and behavior. However, the main
limitation of this work is that it did not identify the mutual con-
tributing effects among different types of data resources. For in-
stance, to produce community recommendation, it did not
address whether injecting users’ existing preferences over items
could be helpful to infer users’ common interests in groups.

Therefore, given the limitations of related works, we have been
motivated to in-depth explore the triangle relationship that is par-
ticularly among items, groups (i.e., communities) and friends.
Moreover, we have investigated how to optimally fuse these data
resources for augmenting the three types of recommendation
simultaneously, under the matrix factorization framework, which
is novel to the best of our knowledge.
3. Factorization background and data property analysis

Before presenting our fusion methods, in this section, we first
introduce the rationale behind our algorithm development, and
then show the representative properties of involved data
resources.
3.1. Rationale behind our choice of fusion mechanism: matrix
factorization

To take into account social relations, there are three typical fu-
sion schemes to choose: the weighted-similarity scheme, the
graph-based scheme, and the matrix factorization (MF) scheme.
The latter two are more advanced and popular than the first one,
among which we finally chose the MF scheme due to the following
concerns.
Table 1
Summary of typical related works.

Citation Type(s) of recommendation Information resourc

Konstas et al. (2009) Item Item interaction, fri
Jamali and Ester (2010) Item Item ratings, trust r
Ma et al. (2011) Item Item ratings, friend
Chen et al. (2009b) Community (group) User-community da
Vasuki et al. (2010) Group Affiliation network
Yang et al. (2011) Item & friend Item interaction, fri
Symeonidis et al. (2010) Friend Friendship
Backstrom and Leskovec (2011) Link (friend) Co-authorship netw
If choosing the graph-based scheme, the common way is apply-
ing the random walk technique to produce recommendations
based on the graph structure (Fouss, Pirotte, Renders, & Saerens,
2007). We previously tried this method (Yuan, Chen, & Zhao,
2012), but found it is inevitably complex when handling the
large-scale dataset. Specifically, random walk is a mathematical
formalization of trajectory that consists of taking successive ran-
dom steps. At each step, the next node in the walk is selected ran-
domly from the neighbors of the last node in the walk. The
sequence of visited nodes is a Markov chain, with the transition
probability. Since the graph is totally connected, the Markov chain
is irreducible. That is, every state can be reached from any of other
states. For recommender systems, the random walk technique can
be applied to calculate the similarity between two users, including
directly connected user nodes and indirectly connected ones, based
on the whole graph’s knowledge. For instance, a random walker
gets off from the node user ua and arrives at the node user ub with
the probability pab, or arrives at the node user uc with the probabil-
ity pac. If pab > pac, it is reasonable to say that ua is connected to ub

more closely than to uc, and hence Similarity(ua,ub) should be big-
ger than Similarity(ua,uc).

Therefore, suppose there is a set of users for whom we want to
provide item recommendations, the computation complexity of
the random walk will be O(m � (N) � jUj), where m is the iteration
times, N is the number of user-item edges (pairs), and jUj is the to-
tal number of users. We can see that for each user, we need to run
m times of iteration. The number of edges (N) will increase rapidly
as the jUj grows, which will make the computation time unavoid-
ably considerable when the size of jUj is very large. It thus implies
that the graph-based method is not an optimal choice for handling
the large-scale dataset.

In recent years, matrix factorization (MF) technique has brought
more attentions in the area of recommender system, mainly own-
ing to its well-recognized merit in saving the computation cost
(Koren et al., 2009). Its original form is the low-rank MF which
was proposed to train user-item matrix, under the assumption that
a user’s preferences are influenced by a set of factors and hence the
preference vector is determined by how each factor affects that
user (Rennie & Srebro, 2005; Salakhutdinov & Mnih, 2008a). In
addition to factorizing only user-item (e.g., user-movie) matrix,
Singh and Gordon (2008) introduced collective matrix factorization
(CMF) which was to combine the factorization of item-feature (e.g.,
movie-genre) matrix with the one of user-item (e.g., user-movie)
matrix. As to the algorithm’s complexity, in the case with implicit
interaction data (that we focus in this paper), the Alternating Least
Square (ALS) can be used to conduct the optimization process (Hu
et al., 2008). The complexity is O(f2N + f3jUj + f3jIj), where N is the
number of user-item pairs, jUj is the total number of users, and
jIj is the total number of items. Therefore, it can be seen that the
running time is linearly increasing with the size of the input. Be-
cause the value of f (the number of factors) normally lies between
20 and 200 which is much smaller than the sizes of users and
items, the MF technique is obviously less complex and less time
e(s) Algorithm framework

endship, social annotation Random walk
elation, friendship Matrix factorization
ship Matrix factorization
ta Latent Dirichlet allocation, association rule mining
(user-group), friendship Graph proximity, link prediction
endship Factor-based random walk

Graph proximity and transitivity
ork (friendship) Random walk
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consuming than the random walk process, especially when there
are more than thousands of users.

Based on the above comparison, we decided to use MF as the
basic recommendation mechanism. The question to us is then:
how to fuse heterogenous resources under this framework to augment
the three types of recommendation simultaneously: items, groups and
friends? As a matter of fact, related factorization-based recom-
mender methods primarily emphasized item recommendation.
Few have studied the actual role of MF in handling social recom-
mendation, when membership and friendship are concerned.
Therefore, in this paper, we have not only proposed and evaluated
the methods of incorporating membership (along with friendship)
to improve item recommendation, but also investigated how to
fuse different resources to benefit group and friend recommenda-
tions based on the matrix factorization mechanism.
3.2. One mode vs. bipartite data

Given a system like Last.fm, there are three types of data avail-
able, which are: (1) user-item interaction data (e.g., implicit binary
data in Last.fm where 1 means users clicked the item, and 0 other-
wise), (2) the user-user friendship, and (3) the user-group mem-
bership. We classify these data into two classes: one mode data
and bipartite data (Fig. 2). One mode data refer that the data set
only contains one type of entity. For example, in user-user friend-
ship (see Fig. 2(a)), there exists only one type of entity which is the
‘‘user’’. Bipartite data mean that the data set contains two types of
entities (see Fig. 2(b)). For example, in user-item interaction re-
cords, one is the ‘‘user’’ and the other is the ‘‘item’’. In user-group
membership, the two entities are the ‘‘user’ and the ‘‘group’’.

For the one mode data, since it describes the relation between
entities which are with the same type, it can be considered as an
indicator of closeness. That is, if there is a link between two enti-
ties, we can regard that the two entities are closer than the ones
without the link. Because of this, most state-of-the-art works
leverage regularization model to fuse the one mode data in order
to minimize the gap between the taste of a user and the taste of
her/his friends (Ma et al., 2008, 2011; Jamali & Ester, 2010).

On the other hand, for the bipartite data, we argue that it is dif-
ferent from the one mode data in nature since a user indicates her/
his interests in the item (or group) by interacting with it (e.g., rat-
ing/joining), which is however absent in the one mode data. There-
fore, such data would be more suitably addressed by the
factorization model, because it can effectively factorize user-item
relations (or user-group relations) into two components and obtain
a user’s latent factor model and an item’s latent factor model
simultaneously. However, if we handle bipartite data in the man-
ner of regularization, we need to first do the one-mode projection,
Fig. 2. One mode relation
i.e., transforming the user-group relationship into the user-user
relationship, but the one-mode projection is less informative than
the bipartite representation. For example, user u1 and user u2

joined group a, and user u1 and user u3 joined another group b.
Group a and group b are two different groups with different discus-
sion topics. If we project such data into a user-user relation graph,
u1 will be linked to both u2 and u3. From the transitivity perspec-
tive, u2 and u3 should share some common interests, but the fact
is not.

Thus, for bipartite relations, we choose the collective matrix fac-
torization (CMF) technique to factorize them. Our experiments (see
Section 8) prove that the performance of factorization model for
fusing bipartite data is better than the one of regularization model,
while the regularization is better than the factorization when deal-
ing with one mode data.

4. Recommending items: fusing friendship and membership

In this section, we mainly present the methods developed for
augmenting item recommendation. We first describe the baseline
method and then the fusion methods that we propose for injecting
the social relations. Table 2 lists all major notations that are used in
this paper.

4.1. Baseline: matrix factorization with implicit data

As mentioned in the introduction, the focus of this paper is on
proposing effective methods for enhancing the recommendation
when there is only implicit user behavior. This data condition is
actually quite common in current social media sites because basi-
cally they all have implicit records, but not all of them can get ex-
plicit ratings from users.

With the implicit binary data as input, a matrix can be built
with rows denoting users and columns representing items, which
is similar to the explicit user-item matrix. However, instead of
putting the exact rating (e.g., from 1 to 5, or 0 if no rating provided)
in each cell, it should be either 1 (if the user clicked the item) or 0
(otherwise). The other two differences from processing explicit rat-
ings are that: (1) the factor model should be tailored with varied
confidence levels (that indicate how much a user prefers an item).
The confidence level can be computed according to the time a user
spends on an item, or the frequency a user interacts with an item;
(2) the optimization process should account for all <user, item>
pairs. That is, no matter whether the cell is ‘1’ or ‘0’, the value could
be taken into consideration.

With this matrix, we can map both users and items to a joint la-
tent factor space with the dimensionality k. The objective was then
to compute a user-factor vector xu for each user u, and compute an
vs. bipartite relation.



Table 2
Notations used in the equations.

Notation Description

m, n, l The numbers of users, items and groups respectively
k The dimension of the factor vector
X, Y, Z The user-factor, item-factor and group-factor matrix respectively
xu, yi, zg The user u, item i and group g factor vector respectively
pui; p�ug ; p0uf User u’s preference on item i, group g and user f respectively

p(u), p⁄(u),
p0(u)

The vector that contains u’s the preference on all items, all groups and all friends respectively

cui; c�ug ; c0uf The confidence level indicating how much a user likes an item, a group and a friend respectively

Cu, C⁄u, C
0u Cu denotes the n � n diagonal matrix and Cu

ii ¼ cui; C�u denotes the l � l diagonal matrix and C�ugg ¼ c�ug ; C0u denotes the m �m diagonal matrix and

C0uff ¼ c0uf

Ci, C⁄g, C
0 f

Ci denotes the m �m diagonal matrix and Ci
uu ¼ cui; C�g denotes the m �m diagonal matrix and C�guu ¼ cug ; C0f denotes the m �m diagonal matrix and

C0fuu ¼ cuf

F(u) The friend set of user u
kf The coefficient of the regularization
a, b The coefficients for the collective matrix factorization
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item-factor vector yi for each item i. The rating prediction for user u
to item i is based on the inner product of corresponding user-factor
and item-factor, i.e., rui ¼ xT

uyi. More specifically, factors are com-
puted by minimizing the following cost function:

min
u� ;i�

X
u;i

cui pui � xT
uyi

� �2 þ k
X

u

kxuk2 þ
X

i

kyik
2

 !
ð1Þ

where pui measures user u’s preference on item i: it is 1 if u
‘‘clicked’’ the item; otherwise, pui = 0. cui is the confidence level (it
is default set as 1 if no confidence-related data such as ‘‘time’’
and ‘‘frequency’’ are available).

The above cost function contains m⁄n terms, where m is the
number of users and n is the number of items. To optimize it, we
apply the Alternating Least Squares (ALS) due to two primary con-
siderations (as inspired by Koren et al. (2009) and Hu et al. (2008)):
(1) though in general another optimization process, Stochastic Gra-
dient Descent (SGD), is easier and faster than ALS, ALS can help
achieve massive parallelization of the algorithm because it com-
putes each yi independent of the other item factors and computes
each xu independent of the other user factors; (2) for implicit data,
because the training set cannot be considered sparse, looping over
each single training case, as SGD does, would not be practical, but
ALS can efficiently handle such case.

Based on ALS, the analytic expressions for xu and yi can be
respectively formally defined as:

xu ¼ ðYT CuY þ kIÞ�1YT CupðuÞ ð2Þ
yi ¼ ðX

T CiX þ kIÞ�1XT CipðiÞ ð3Þ

In these equations, Cu denotes a diagonal n⁄n matrix,
where Cu

ii ¼ cui. The vector p(u) contains all the preferences of u
(see Table 2). This baseline approach is shorted as Item.MF
henceforth.

4.2. Fusing friendship by regularization

It can be seen that the baseline method is without any fusions of
other information resources, only considering user-item prefer-
ence data alone. To inject friendship in this framework, we tried
the factorization approach, which was to factorize user-user
friendship into two factor vectors (Yuan, Chen, & Zhao, 2011).
However, as mentioned before, because friendship belongs to
one-mode data with only one type of entity existing, the regulari-
zation model should be more suitable (Jamali & Ester, 2010; Ma
et al., 2011). Grounded on this model, we develop the following
equation in order to minimize the gap between the taste of a user
and the average taste of her/his friends:

min
u� ;i�

X
u;i

cui pui � xT
uyi

� �2 þ k
X

u

kxuk2 þ
X

i

kyik
2

 !

þ kf xu �
1
jFðuÞj

X
f2FðuÞ

dsimðu; f Þxf

������
������

2
0B@

1CA ð4Þ

In the above formula, kf is the coefficient for the friendship reg-

ularization. dsimðu; f Þ ¼ simðu; f Þ=
P

v2FðuÞsimðu;vÞ denotes the nor-
malized similarity degree between the user u and her/his friend
f, which is used to adjust individual friends’ contributions when
predicting the target user’s interests. It is worth mentioning that
this similarity measure is a special element that we integrate into
the regularization process in order to enhance its prediction power.
In the experiment, we particularly compared the similarity-inte-
grated regularization method to the one without its integration.
We also tested different approaches to calculate the similarity de-
gree, including ones based on common groups (shared by the user
and her/his friend), common item preferences, and common
friends. The Vector Space Similarity (VSS) is concretely performed:
simðu; f Þ ¼ rurf

krukkrf k
, where ru can denote group vector, friend vector

or item vector of user u. The experimental results show that the
common-group based similarity measure performs more accurate
than others (see Section 8.1.2).

We then adopt alternating-least-squares to perform the optimi-
zation process. Due to the addition of the friendship regularization
part, the analytic expression for xu is changed to:

xu ¼ ðYT CuY þ ðkþ kf ÞIÞ�1 YT CupðuÞ þ kf

jFðuÞj
X

f2FðuÞ

dsimðu; f Þxf

0@ 1A
ð5Þ

For yi, it is the same as the one defined in Eq. (3).
With the purpose of comparison in the experiment, the regular-

ization equation without the similarity integration is:

min
u� ;i�

X
u;i

cui pui � xT
uyi

� �2 þ k
X

u

kxuk2 þ
X

i

kyik
2

 !

þ kf xu �
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X
f2FðuÞ
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������
������

2
0B@

1CA ð6Þ
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Accordingly, the analytic expression for xu in Eq. (6) is:

xu ¼ ðYT CuY þ ðkþ kf ÞIÞ�1 YT CupðuÞ þ kf
1
jFðuÞj

X
f2FðuÞ

xf

0@ 1A ð7Þ
4.3. Fusing membership by factorization

Compared to the friendship that involves only one type of en-
tity, the membership involves two types of entities which reflect
users’ participation in groups. Therefore, the user-group interaction
matrix can be directly factorized into two components: the ‘‘user’’
latent factor and the ‘‘group’’ latent factor. Therefore, we base col-
lective matrix factorization (Singh & Gordon, 2008) to incorporate
the factorization of membership into the item recommendation:

amin
u� ;i�

X
u;i

cui pui � xT
uyi

� �2 þ k
X

u

kxuk2 þ
X

i
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2

 !
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X
u;g

c�ug p�ug � xT
uzg

� �2
þ k

X
u

kxuk2 þ
X

i

kzgk2

 !
ð8Þ

where the parameter a is used to adjust the relative weights of
user-item matrix and user-group matrix in the factorization. Similar
to the definition of confidence level cui when factorizing user-item,
we introduce the c�ug for user-group, that indicates the confidence
level regarding users’ preference over groups. Based on ALS, the
analytic expression for xu is:

xu ¼ ðaYT CuY þ ð1� aÞZT C�uZ þ kIÞ�1 � ðaYT CupðuÞ
þ ð1� aÞZT C�up�ðuÞÞ ð9Þ

The expression for group factor zg is:

zg ¼ ðXT C�gX þ kIÞ�1XT C�gp�ðgÞ ð10Þ

For yi, it is the same as in Eq. (3).
We also developed a regularization-based membership fusion

approach, in order to compare it to the above factorization-based
method in the experiment. The concrete idea was to convert
user-group matrix into user-user relationship by means of a
weighted scheme. For example, if user u and user v joined two
common groups, there is a link between user u and user v, with
the weight set as two. The cost function is formally defined as:

min
u� ;i�

X
u;i

cui pui � xT
uyi

� �2 þ k
X

u

kxuk2 þ
X

i
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2

 !

þ kn xu �
1

jNðuÞj
X

n2NðuÞ
wun � xn

�����
�����

2
0@ 1A ð11Þ

where kn is the coefficient for the regularization of membership,
N(u) is the user u’s neighboring users who have common groups
with u, and xn is the neighbor’s factor. wun is the weight between
the current user u and the neighbor n, which is calculated as:

wun ¼
jCGunjP

i2NðuÞjCGuij
ð12Þ

where CGun is the set of common groups between user u and n, and
jCGunj is the set’s size. The analytic expression for xu is:

xu¼ðYT CuYþðkþkf ÞIÞ�1 YT CupðuÞþkn
1

jNðuÞj
X

n2NðuÞ
wun �xn

 !
ð13Þ

On the other hand, in order to compare factorization and reg-
ularization for fusing friendship, we also implemented a factor-
ization-based friendship fusion method, which is essentially
similar to Eq. (8), but with the user-user binary matrix as input
where a cell is assigned ‘1’ if two users have the friendship
linkage.

4.4. Fusing membership and friendship together

After fusing friendship and membership separately, we derive a
formula to fuse them together (see Eq. (14)). Concretely, the factor-
ization of user-item matrix is combined with the similarity-inte-
grated regularization of friendship & the factorization of user-
group matrix:
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ð14Þ

The analytic expression for xu is:

xu ¼ ðaYT CuY þ ð1� aÞZT C�uZ

þ ðkþ akf ÞIÞ�1 a YT CupðuÞ þ kf
1
jFðuÞj

X
f2FðuÞ

dsimðu; f Þxf

0@ 1A0@
þ 1� aÞZT C�up�ðuÞ
� �

ð15Þ

For the item factor yi, it is the same as in Eq. (3), and for the
group factor zg, it is the same as in Eq. (10).

An alternative combination model that is without the similarity
measure being integrated into the regularization of friendship is:
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The analytic expression for xu to minimize the above cost func-
tion is hence:

xu ¼ ðaYT CuY þ ð1� aÞZT C�uZ þ ðkþ akf ÞIÞ�1

� a YT CupðuÞ þ kf
1
jFðuÞj

X
f2FðuÞ

xf

0@ 1Aþ ð1� aÞZT C�up�ðuÞ

0@ 1A ð17Þ
4.5. Making top-N recommendation

To generate a top-N recommendation list for each user u, we as-
sume her/his candidate item set (i.e., items untouched by the user)
is /u. For each item i in /u, we calculate a prediction score as
follows:

p0ui ¼ xT
u � yi ð18Þ

where xT
u and yi are the user’s latent factor model and the item’s la-

tent factor model respectively, obtained from the above described
methods.

Top-N items with higher scores will then be included the rec-
ommendation list and returned to the target user.
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5. Recommending groups: fusing friendship and user-item
preferences

5.1. Baseline

To recommend groups to a user, we take the user-group matrix
as the bipartite data type and use the following equation as the
baseline (which is without any fusions of other information re-
sources except for the membership data themselves).

min
u� ;g�

X
u;g

c�ug p�ug � xT
uzg

� �2
þ k

X
u

kxuk2 þ
X

g

kzgk2

 !
ð19Þ

where p�ug equals 1 if the user u joined group g, otherwise it is 0; c�ug

is the confidence level (see Table 2). The analytic expressions for xu

and zg which are used to minimize the above cost function are
respectively:

xu ¼ ðZT C�uZ þ kIÞ�1ZT C�up�ðuÞ ð20Þ

zg ¼ ðXT C�gX þ kIÞ�1XT C�gp�ðgÞ ð21Þ

The prediction score of a user’s preference over an un-joined
group can then be calculated through the inner product: p̂�ug ¼ xT

uzg .

5.2. Fusing friendship by regularization

To fuse friendship into the group recommendation, we empiri-
cally evaluated both regularization and factorization methods (see
Section 8.2). Particularly, with the same consideration raised in
Section 4, we propose the similarity-integrated regularization model
to inject the friendship into group recommendation:

min
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X
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c�ug p�ug � xT
uzg
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þ k
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where dsimðu; f Þ has the same definition as in Eq. (4).
The analytic expression for xu is

xu¼ðZT C�uZþðkþkf ÞIÞ�1 ZT C�up�ðuÞþ kf

jFðuÞj
X

f2FðuÞ

dsimðu;f Þxf

0@ 1A ð23Þ

The analytic expression for the group factor zg is the same as in
Eq. (21).

To save space, the equation without the similarity integration is
not listed here, but its general form can be referred to Eq. (6).

Besides, we implemented the factorization-based friendship fu-
sion in group recommendation, which is similar to Eq. (24) (see
next section), but with the user-user binary matrix as input (rather
than the user-item matrix) where a cell is assigned ‘1’ if two users
are friends.

5.3. Fusing user-item preferences by factorization

As mentioned before, the user-item preferences in our system
are inferred from the implicit data (e.g., the user’s ‘‘clicking’’ behav-
ior). Before, we have attempted to incorporate membership into
the item recommendation (see Section 4.3). Viceversa, the user-
item preferences could also be fused into the process of recom-
mending groups. In this regard, we have developed both factoriza-
tion and regularization models, but still placed more focus on the
factorization method due to the ‘‘bipartite’’ data property of user-
item relationship:
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The analytic expressions for xu and yi are respectively defined
as:

xu ¼ ðaZT C�uZ þ ð1� aÞYT CiY þ kIÞ�1 � ðaZT C�up�ðuÞ
þ ð1� aÞYT CupðuÞÞ ð25Þ

yi ¼ ðX
T CiX þ kIÞ�1XT CipðiÞ ð26Þ

The expression for zg is the same as in Eq. (21).
Alternatively, the regularization-based fusion method converts

the user-item relation into the user-user weighted relation:
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ð27Þ

where the weight w�un ¼
jOun jP

i2NðuÞ jOui j
(for which Oun is the set of com-

mon items interacted by both users u and n, and N(u) is user u0s
neighbors who have common items with u).

The analytic expression for xu in the above model is:

xu¼ðZT C�uZþðkþkf ÞIÞ�1 ZT C�up�ðuÞþkn
1

jNðuÞj
X

n2NðuÞ
x�un �xn

 !
ð28Þ
5.4. Fusing friendship and user-item preferences together

To assess the effect of combining the two information resources,
i.e., friendship and user-item preferences, we have fused them to-
gether via the equation below:

amin
u� ;g�

X
u;g

c�ug p�ug � xT
uzg

� �2
þ k

X
u

kxuk2 þ
X

g

kzgk2

 !

þ kf xu �
1
jFðuÞj

X
f2FðuÞ

dsimðu; f Þxf

������
������

2
0B@

1CA
þ ð1� aÞmin

u� ;i�

X
u;i

cui pui � xT
uyi

� �2 þ k
X

u

kxuk2 þ
X

i

kyik
2

 !
ð29Þ

where the friendship is handled by the similarity-integrated regu-
larization model and user-item preferences are handled via the fac-
torization. This combination was actually devised, after we
compared regularization with factorization in terms of fusing
friendship and user-item preferences separately in the experiment
(see Section 8.2). The analytic expression for xu is

xu ¼ aZT C�uZþð1�aÞYT CuY þðkþakf ÞI
� ��1

� a ZT C�up�ðuÞþ kf

jFðuÞj
X

f2FðuÞ

dsimðu; f Þxf

0@ 1Aþð1�aÞYT CupðuÞ

0@ 1A
ð30Þ

The analytic expression for zg is the same as in Eq. (21), and for
yi it is the same as in Eq. (26).

Still, to save space, the equation without the similarity measure
being integrated into the combination model is not listed here, but
its general form can be referred to Eq. (16).



Table 3
Description of two datasets.

Element Size Element Size

Last.fm #user 100,000 #user-item pair 29,908,020
#item 22,443 #friendship pair 583,621
#group 25,397 #user-group pair 1,132,281

Douban #user 71,034 #user-item pair 12,292,429
#item 25,258 #friendship pair 273,832
#group 2,973 #user-group pair 373,239
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6. Recommending friends: fusing membership and user-item
preferences

6.1. Baseline

As to friend recommendation, it is essentially more challenging
and difficult than item and group recommendations, because there
might be various reasons for two users to become friends. In our
baseline method, we propose to add the regularization process into
the basis matrix factorization due to the friendship’s one mode
property. Formally, the cost function is

min
u� ;f �

X
u;f

c0uf p0uf � xT
uxf

� �2
þ kkxuk2 þ kf xu �

1
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X
f2FðuÞ

xf

������
������

2

ð31Þ

where the definitions of c0uf and p0uf can be seen in Table 2. In this
equation, the first part shows the factorization and the second part
gives the regularization. The analytic expression for xu is

xu ¼ ðXT C 0uX þ ðkþ kf ÞIÞ�1 XT C 0up0ðuÞ þ kf

jFðuÞj
X

f2FðuÞ
xf

0@ 1A ð32Þ

The users with higher prediction scores computed from
p̂0uf ¼ xT

uxf will then be recommended to the target user as her/his
friend candidates.

6.2. Fusing user-item preferences by factorization

To fuse user-item preferences, we mainly exploit the factoriza-
tion approach because the regularization was already embedded in
the baseline Eq. (31). Thus, the cost function that is integrated with
the factorization of item preferences is:
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The analytic expressions for xu and yi are respectively defined
as:

xu ¼ ðXT C 0uX þ aYT CuY þ ðkþ kf ÞIÞ�1
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0@ 1A ð34Þ

yi ¼ ðX
T CiX þ kIÞ�1XT CipðiÞ ð35Þ
2 www.last.fm
3

6.3. Fusing membership by factorization

Similarly, we apply the factorization model for fusing member-
ship. The cost function is hence:
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The analytic expressions for xu and zg are respectively:

xu¼ XT C0uXþaZT C�gZþðkþkf ÞI
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0@ 1A ð37Þ
zg ¼ XT C�gX þ kI
� ��1

XT C�gp�ðgÞ ð38Þ
6.4. Fusing membership and user-item preferences together

The membership and user-item preferences can be then fused
simultaneously into the following framework:
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where a and b are respectively used to adjust the relative weights of
user-item preferences and the user-group membership. The ana-
lytic expression for xu is concretely defined as:

xu ¼ XT C 0uX þ aYT CuY þ bZT C�gZ þ ðkþ kf ÞI
� ��1
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The analytic expressions for yi and zg are the same as the ones in
Eqs. (35) and (38) respectively.

7. Experiment setup

7.1. Dataset

Two real-world datasets, namely Last.fm2 and Douban,3 were
used to test the performance of the above-described algorithms.
The Last.fm is a worldwide popular social music site. The item in this
dataset is referred to the ‘‘artist’’ (because users’ preference over ar-
tists can be more stable than their preference over songs). The mem-
bership indicates the user’s participation in interest groups, and the
friendship was extracted from the user’s friend list. We first wrapped
the user-item interaction data and social relations from Last.fm, and
then randomly sampled 100 k users from the dataset to do the eval-
uation. Douban is a popular social media site in China that supports
users to freely share movies, books and music. For the sake of sim-
plicity, we collected users’ data only related to movies in Douban.
We treat the user-item interaction matrix as 0/1, that is, the cell
equals to 1 if the user viewed (or rated) the item and 0 otherwise.
Moreover, as Douban supports Twitter-like following mechanism,
two users were treated as friends only if they follow each other.
The details of the two datasets are given in Table 3.

To test item recommendation methods, the user-item pairs
were first divided into 10 subsets with equal sizes. Two subsets
www.douban.com

http://www.last.fm
http://www.douban.com
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were then randomly chosen: one was the validation set for tuning
the equations’ parameters, and another was the testing set for test-
ing the algorithm accuracy. Different combinations of remaining 8
subsets represent various levels of data density. For example,
train.10 contains 10% user-item pairs of the total data, and train.20
contains 20% user-item pairs.

As for group and friend recommendation, we applied the leave-
one-out evaluation scheme because user-group pairs and user-user
friendship pairs are rather sparse so they cannot be divided into
multiple subsets. For the same reason, there is no validation set
in this case, because if some groups (or friends) were chosen as
the validation set, many users will become isolated nodes. There-
fore, according to the leave-one-out strategy, during each testing
round, one of the user’s participated groups (or connected friends)
was randomly chosen as her/his target choice, and the evaluation
was to assess whether this target choice is included in the top-N
recommendation list or not.

7.2. Evaluation metrics

Regarding item recommendation, because we emphasize pre-
dicting users’ interests in un-clicked items based on their implicit
clicking behavior, the evaluation was done on the whole set of
top-N recommendations (e.g., N = 5,10), instead of for every rec-
ommended item. Accordingly, we chose recall and precision as
evaluation metrics, rather than NDCG and RMSE (Shani & Guna-
wardana, 2011), because the latter two have been commonly used
to assess explicit ratings, less for implicit, binary data. In addition,
as pointed out by Bellogin, Castells, and Cantador (2011), the
RMSE-related metrics showed a heavy bias towards known rele-
vant items, that considerably overestimated the performance.

1. Recall. It measures the fraction of relevant items as from the
user’s testing set are recommended to the user. All users’ recall
values are then averaged to indicate the tested algorithm’s
overall performance, which is expected to be as high as possible
to suggest good accuracy.
recall@N ¼ 1
m

Xm

u¼1

hitsðxuÞ@N
jTj ð41Þ
where N is the size of the recommendation list, jTj is the size of each
user’s testing set T, m is the total number of users, and hits(xu)@N
gives the intersection between the recommendation list and the
user xu’s testing set.
2. Precision. This metric measures the faction of recommended

items that appear in the user’s testing set. The average of all
users’ precision values is computed via the following equation:
precision@N ¼ 1
m

Xm

u¼1

hitsðxuÞ@N
N

ð42Þ
3. F-measure. In addition, we calculated F-measure which com-
bines precision and recall through the harmonic mean. It can
be interpreted as a weighted average of precision and recall.
F1@N ¼ 1
m

Xm

u¼1

2

� hitsðxuÞ@N
jTj � hitsðxuÞ@N

N

� �	
hitsðxuÞ@N
jTj þ hitsðxuÞ@N

N

� �
ð43Þ
For evaluating group and friend recommendations, we mainly
used the metric hit-ratio Hits@N which gives the percentage of
users whose target choice (i.e., a group or a friend as randomly
withdrawn from the dataset) is located in the top-N recommenda-
tion list:
Hits@N ¼ 1
m

Xm

u¼1

sucðxuÞ@N ð44Þ

where suc(xu)@N is equal to 1 if the user u0s target choice was suc-
cessfully recommended (otherwise it is 0).
8. Results analysis

In Table 4, we first list the abbreviations of all algorithms that
have been described in Sections 4–6.

8.1. Item recommendation

In this section, we first summarize the results from a prelimin-
ary testing that was published in Yuan et al. (2011). We then report
new results that we get from the current experiment that empha-
sizes revealing the specific effect of similarity-integrated methods
and the combination models.

8.1.1. Summary of previous results
In a prior work with tentative testings (Yuan et al., 2011), we

found that fusing friendship and/or membership acts quite active
in sparse dataset (e.g., at train.10), but as the training data becomes
denser (at train.40 and train.50), the effect tends to vanish. Our
explanation for this phenomenon is that when the matrix is very
sparse, auxiliary, heterogenous data resources like social relations
can take complementary role to infer users’ tastes. However, if the
user-item matrix is dense enough, introducing auxiliary data re-
sources may likely bring noises, instead of improving the recom-
mendation performance. Thus, we set the data density level at
train.10 (i.e., with 10% of user-item pairs) when measuring other
fusion-based item recommendation algorithms. Previously, we
also identified that fusing friendship/membership can help in-
crease the recommendation accuracy relative to the baseline ap-
proach. For instance, in the Last.fm dataset, the accuracy can be
improved up to 18.14% at recall@10.

We then compared the two models: factorization and regulariza-
tion, in respect of their respective roles in fusing friendship (and
membership) for item recommendation. Since two users may join
the same group by accident, we only considered users who have at
least 2 common groups with the target user, who form the set N(u)
in Eq. (12). Fig. 3 shows the performance comparison results. Each
line represents the precision of the tested algorithm at a given re-
call. It can be seen from Fig. 3(a) that fusing friendship by regular-
ization (Item.MF.F.R) is clearly better than by factorization
(Item.MF.F.F), which proves our hypothesis that regularization
model is more good at minimizing the gap between the taste of a
user and the taste of her/his friends. However, for fusing the mem-
bership data, factorization outperforms regularization (as shown in
Fig. 3(a)).

8.1.2. Impact of integrating similarity into friendship regularization
As the extension of previous work, in the current experiment,

we have tested whether integrating the similarity measure in the
friendship’s regularization (as described in Section 4.2) could obvi-
ously increase its prediction power. Table 5 shows the results of
comparing different similarity computations: Item.MF.F.ICos
(based on common items), Item.MF.F.GCos (based on common
groups) and Item.MF.F.FCos (based on common friends), respec-
tively in Last.fm and Douban datasets. It can be seen that all of
these similarity-integrated regularization methods perform better
than the one without the similarity integration (i.e., Item.MF.F.R)
in both datasets. It further shows that the best performance goes
to Item.MF.F.GCos which calculates the similarity based on com-
mon groups as shared by the user and her/his friend (except that



Table 4
List of compared algorithms.

Abbreviation Algorithm description Details

Recommending items
Item.MF Basic matrix factorization Section 4.1
Item.MF.F.R Fusing the friendship by regularization Section 4.2
Item.MF.F.F Fusing the friendship by factorization Section 4.3
Item.MF.M.R Fusing the membership by regularization Section 4.3
Item.MF.M.F Fusing the membership by factorization Section 4.3
Item.MF.FM Fusing the Friendship by regularization and fusing the Membership by factorization Section 4.4
Item.MF.F.FCos Fusing the friendship by similarity-integrated regularization based on common friends Section 4.2
Item.MF.F.GCos Fusing the friendship by similarity-integrated regularization based on common groups Section 4.2
Item.MF.F.ICos Fusing the friendship by similarity-integrated regularization based on common items Section 4.2
Item.MF.FM.GCos Fusing the friendship by Item.MF.F.GCos and fusing the membership by factorization Section 4.4

Recommending groups
Group.MF Basic matrix factorization Section 5.1
Group.MF.F.R Fusing the friendship by regularization Section 5.2
Group.MF.F.F Fusing the friendship by factorization Section 5.2
Group.MF.I.R Fusing the user-item preferences by regularization Section 5.3
Group.MF.I.F Fusing the user-item preferences by factorization Section 5.3
Group.MF.FI Fusing the friendship by regularization and fusing the user-item preferences by factorization Section 5.4
Group.MF.F.FCos Fusing the friendship by similarity-integrated regularization based on common friends Section 5.2
Group.MF.F.GCos Fusing the friendship by similarity-integrated regularization based on common groups Section 5.2
Group.MF.F.ICos Fusing the friendship by similarity-integrated regularization based on common items Section 5.2
Group.MF.FI.GCos Fusing the friendship by Group.MF.F.GCos and fusing the user-item preference by factorization Section 5.4

Recommending friends
Friend.MF Basic matrix factorization Section 6.1
Friend.MF.M.F Fusing the membership by factorization Section 6.3
Friend.MF.I.F Fusing the user-item preferences by factorization Section 6.2
Friend.MF.MI Fusing the membership and user-item preferences together Section 6.4
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Fig. 3. Regularization vs. factorization (regarding item recommendation) in Last.fm dataset.
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the precisions of Item.MF.F.ICos are better than ones of Item.-
MF.F.GCos in Douban). It thus infers that the group information
might be a better indicator (given that users usually join in a group
based on their common interests) and be less noisy when being
used to compute the similarity.

On the other hand, though the similarity measure can boost the
friendship’s fusion power, the fusion of membership outperforms
its best result (i.e., Item.MF.M.F against Item.MF.F.GCos; see Table
5), indicating that membership is more effective than friendship
for augmenting the item recommendation’s accuracy.

8.1.3. Fusing friendship and membership together
The reported results by far suggest that no matter which type of

social relation it is, the performance of fusing it is better than the
baseline Item.MF which is without any data fusions. Driven by
these results, we further combined both types of social relation-
ships and incorporated them together into the process of recom-
mending items (as described in Section 4.4). The results (see
Table 5 and Fig. 4) show that the combination method did outper-
form the one that fuses friendship or membership alone. For in-
stance, in Last.fm dataset, the best result from the combination
(Item.MF.FM) increased the recall@5 by 26.67% (relative to the
baseline), while fusing friendship alone can only achieve maxi-
mally 6.67% improvement, and fusing membership alone raises
the recall@5 up to 23.80% (which is still lower). According to this
observation, we believe that membership and friendship can be
complementary to each other for resolving the data sparsity prob-
lem (given the reported accuracy values all at train.10). Moreover,



Table 5
Results w.r.t. recommending ITEMS through the validation (Prec: Precision; Rec: Recall; F1: F-measure).

Method Prec@5 Prec@10 Rec@5 Rec@10 F1@5 F1@10

Last.fm dataset
Item.MF (baseline) 0.0547 0.0522 0.0105 0.0198 0.0161 0.0259

Item.MF.F.R (kf = 1) 0.0570 0.0540 0.0110 0.0206 0.0168 0.0268
Item.MF.F.FCos (kf = 10) 0.0580 0.0557 0.0112 0.0212 0.0171 0.0277
Item.MF.F.GCos (kf = 10) 0.0581 0.0561 0.0112 0.0214 0.0171 0.0279
Item.MF.F.ICos (kf = 10) 0.0581 0.0560 0.0112 0.0213 0.0171 0.0278

Item.MF.M.F (a = 0.1) 0.0654 0.0615 0.0130 0.0240 0.0196 0.0309
Item.MF.FM (a = 0.2, kf = 10) 0.0659 0.0616 0.0133 0.0245 0.0199 0.0312
Item.MF.FM.GCos (a = 0.1, kf = 10) 0.0672 0.0624 0.0134 0.0246 0.0202 0.0314

Douban dataset
Item.MF (baseline) 0.0368 0.0345 0.0169 0.0310 0.0171 0.0237

Item.MF.F.R (kf = 100) 0.0419 0.0380 0.0190 0.0323 0.0193 0.0254
Item.MF.F.FCos (kf = 100) 0.0420 0.0373 0.0202 0.0355 0.0199 0.0261
Item.MF.F.GCos (kf = 100) 0.0422 0.0383 0.0203 0.0355 0.0200 0.0262
Item.MF.F.ICos (kf = 100) 0.0424 0.0388 0.0191 0.0334 0.0195 0.0261

Item.MF.M.F (a = 0.1) 0.0421 0.0381 0.0201 0.0356 0.0198 0.0262
Item.MF.FM (a = 0.2, kf = 100) 0.0427 0.0383 0.0201 0.0356 0.0200 0.0265
Item.MF.FM.GCos (a = 0.1, kf = 100) 0.0429 0.0388 0.0201 0.0356 0.0201 0.0267

Note: k is set as 10, and the size of user/item latent factors (k) is 10. kf and a were optimally tuned via the validation set.

Fig. 4. Algorithm comparison w.r.t. recommending ITEMS.
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the combination model that is integrated with similarity-enhanced
regularization (i.e., Item.MF.FM.GCos) can further increase the
accuracy (e.g., recall@5 with 27.62% improvement than baseline,
versus 26.67% from Item.MF.FM which is without the similarity
integration). In Douban dataset, because the number of groups is
much less than in Last.fm, the differences between the compared
algorithms are not so obvious than in Last.fm dataset, but still,
the combination of two relational resources (Item.MF.FM.GCos)
can achieve the highest accuracy, in comparison to the separate fu-
sions (i.e., Item.MF.M.F and Item.MF.F.GCos). It thus implies that
when the friendship’s regularization is further improved by adding
the common-group based similarity measure, it can be more effec-
tively combined with the factorization of membership to enable
the item recommendation to reach at a higher level of accuracy.

8.2. Group recommendation

In terms of group recommendation, we compared in total ten
methods in the experiment (see Table 4). Regarding the compari-
son of the two fusion models: regularization and factorization, we
first tested their respective roles in injecting user-item preferences
into the process of recommending groups (see results in Table 6).
Specifically, the results of using factorization model (Group.MF.I.F)
at different data density levels indicate that the recommendation
accuracy can be improved with the increase of density level. That
is, the denser that user-item preferences are when being fused into
the factorization model, the more accurate the group recommen-
dation is. For example, in Douban dataset, the Hits@10 was in-
creased from.2950 (at train.20) to.3095 (at train.80), which are
both higher than the one of baseline (Group.MF, that is without
any auxiliary resources’ fusion). Relatively, the accuracy of regular-
ization model for fusing user-item preferences (Group.MF.I.R) is
lower, and does not obviously change when the data density level
is increased. This might be because once the user-item matrix is
projected into the user-user matrix, a lot of information is lost,
so even with denser user-item matrix, the algorithm’s performance
cannot be clearly improved. It hence verifies our hypothesis again
that the factorization model better suits bipartite data, since this
was not only proven in dealing with membership (for item recom-
mendation), but also in injecting user-item preferences (for group
recommendation).

As for fusing friendship, the comparison of regularization and
factorization (i.e., Group.MF.F.R vs. Group.MF.F.F) shows that the
former approach outperforms the latter (.0910 against.0876 w.r.t.



Table 6
Results w.r.t. recommending GROUPS.

Method Last.fm Douban

Hits@5 Hits@10 Hits@5 Hits@10

Group.MF (baseline) 0.0530 0.0875 0.1995 0.2933

Fusing user-item preferences (via factorization)
Group.MF.I.F@train.20 0.0573 0.0899 0.2030 0.2950
Group.MF.I.F@train.40 0.0678 0.1026 0.2102 0.3013
Group.MF.I.F@train.60 0.0714 0.1068 0.2113 0.3079
Group.MF.I.F@train.80 0.0722 0.1070 0.2120 0.3095

Fusing user-item preferences (via regularization)
Group.MF.I.R@train.20 0.0559 0.0885 0.2025 0.2932
Group.MF.I.F@train.40 0.0559 0.0885 0.2026 0.2936
Group.MF.I.R@train.60 0.0560 0.0886 0.2026 0.2936
Group.MF.I.R@train.80 0.0561 0.0887 0.2027 0.2937

Fusing friendship
Group.MF.F.R 0.0566 0.0910 0.2072 0.2973
Group.MF.F.F 0.0553 0.0876 0.2038 0.2928
Group.MF.F.FCos 0.0549 0.0861 0.2075 0.2974
Group.MF.F.GCos 0.0593 0.0923 0.2093 0.2999
Group.MF.F.ICos 0.0569 0.0897 0.2062 0.2921

Note: the size of user/group latent factors (k) is 10. The other parameters were tuned with optimal values, e.g., for Group.-
MF.I.F@train.20 a = 0.8 in Last.fm dataset and a = 0.9 in Douban dataset.
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Hits@10 in Last.fm, and.2973 vs..2928 in Douban), which reveals
the merit of the regularization model in fusing the one mode data.
We also tested the performance when the similarity measure be-
tween users was integrated into the regularization of friendship.
Being consistent to its effect on augmenting item recommendation,
the similarity-integrated regularization methods are more accu-
rate than the non-similarity based one (Group.MF.F.R), and the
similarity computed with users’ common groups (Group.-
MF.F.GCos) is better than the other similarity measures.

From the resource’s perspective, we compared user-item pref-
erences and friendship in respect of their fusion effects. It shows
that the user-item preferences act much more effective: its maxi-
mal improvement is 36.2% (relative to the baseline, w.r.t. Hits@5
in Last.fm) while the friendship’s best improvement is 11.9%. Actu-
ally, all variations of fusing item-preferences via factorization
(from train.40 to train.80) obtain better outcomes than the ones
of fusing friendship (the detailed comparisons can be seen in Table
6).

Motivated by the above comparison results, we finally tested
the combination of Group.MF.F.GCos and Group.MF.I.F@train.80
(which is shorted as Group.MF.FI.GCos), in order to fuse the two re-
sources (friendship and user-item preferences) together (as de-
scribed in Section 5.4). From Fig. 5, it can be seen that this
Fig. 5. Algorithm comparison w.
combination achieves higher accuracy than fusing the two re-
sources separately. Moreover, Group.MF.FI.GCos is better than an
alternative combination model Group.MF.FI (which is without
the common-group based similarity integration), which suggests
that it gives the ideal combination since it accommodates all mer-
its as derived from both the regularization of friendship and the
factorization of user-item preferences.

8.3. Friend recommendation

As described in Section 6, we have applied the matrix factoriza-
tion technique to generate friend recommendation, and attempted
to fuse other information resources (i.e., membership and user-
item preferences) in order to identify their impact. Given the supe-
rior performance of regularization model for handling friendship
when it was fused to generate item (and group) recommendation,
we added the regularization process as a basis part of the baseline
method (Friend.MF), and then compared it to various fusion meth-
ods that take into account either membership, user-item prefer-
ences, or both (see Table 4).

Table 7 shows the comparison results. As for the fusion of user-
item preferences, we tested the influence of data density level on
algorithm’s performance. It surprisingly shows that when the
r.t. recommending GROUPS.



Table 7
Results w.r.t. recommending FRIENDS.

Method Last.fm Douban

Hits@5 Hits@10 Hits@5 Hits@10

Friend.MF (baseline) 0.0155 0.0203 0.0112 0.0142

Fusing user-item preferences
Friend.MF.I.F@train.10 0.0159 0.0212 0.0111 0.0140
Friend.MF.I.F@train.20 0.0157 0.0209 0.0110 0.0140
Friend.MF.I.F@train.40 0.0152 0.0201 0.0111 0.0140
Friend.MF.I.F@train.60 0.0152 0.0201 0.0112 0.0140
Friend.MF.I.F@train.80 0.0151 0.0199 0.0111 0.0140

Fusing membership, and both resources
Friend.MF.M.F 0.0163 0.0218 0.0117 0.0140
Friend.MF.MI 0.0159 0.0209 0.0111 0.0140

Note: the size of user/item latent factors (k) is set as 50.
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user-item preference data become denser, the accuracy of
Friend.MF.I.F (that fuses user-item preferences) is decreased,
implying that the fusion of more user-item pairs does not obvi-
ously help augment the accuracy. Actually, when the density level
reaches at train.40 in Last.fm, the accuracy is lower than the one of
baseline (Friend.MF). The phenomena are even worse in Douban
dataset, given that the hit ratio of Friend.MF.I.F@train.10 is not bet-
ter than the Friend.MF’s.

With respect to the fusion of membership, Friend.MF.M.F
achieves higher accuracy (.0218 w.r.t. Hits@10 in Last.fm) com-
pared to both the baseline Friend.MF and Friend.MF.I.F@train.10,
indicating that the membership could be potentially more useful
than user-item preferences in terms of benefiting the friend recom-
mendation. The similar improvement occurs in Douban, but only to
Hits@5, which may be caused by the implicit friendship that we
crawled from the two-way follower/followee relationship (so it is
not stable as the friend list that the user created).

Another finding is that the combination approach (Friend.MF.-
MI, that fuses user-item preferences @train.10 and membership to-
gether) is found not outperforming Friend.MF.M.F (that only fuses
membership) in both datasets. This finding implies that fusing
membership alone might be enough to accomplish the goal of
enhancing friend recommendation, given that the user-item pref-
erence might bring some noises and negative influences when it
is fused together with the membership. In this experiment, we also
tested the effect of integrating similarity measure into the regular-
ization of friendship, but since the performance was not obviously
improved, the results are not shown in the table. The implication is
then that, for the friend recommendation, attaching the similarity
degree as the weight to the target user’s friends might not be an
effective way to find more relevant friends for the user. However,
as shown in previous sections, the similarity measure can help ad-
just the friends’ respective contributions (especially based on com-
mon groups) when it is utilized to predict the user’s preference
over items or groups.

9. Conclusions

In conclusion, this paper presents a unified framework that rec-
ommends items, groups and friends in a single system by examin-
ing their mutual contributions. Below we summarize the major
findings of the work.

� Recommending items: (1) with the implicit users’ interaction
data, we proved that the social relations can be helpful to boost
top-N recommendation accuracy, especially in very sparse data-
set. It hence suggests that fusing friendship and membership
data can well address the cold-start and sparsity problem in
the implicit data condition. (2) To the best of our knowledge,
this work is the first one that in-depth explored the specific role
of membership and revealed that it performs more effective than
friendship in augmenting the item recommendation. (3) We
also proved that the system performance can be further
enhanced when membership and friendship are combined via
the collective factorization mechanism.
� Recommending groups: (1) both user-item preferences and

friendship exhibit positive effects on increasing the accuracy.
(2) The user-item preferences were shown more effective than
friendship, especially when higher density level of user-item
preference data was contributed. (3) The two resources’ combi-
nation achieves even higher accuracy than fusing either of them
alone.
� Recommending friends: membership acts more positive for

improving the friend recommendation accuracy, which is even
more accurate than the combination model.

From the perspective of algorithm design, two constructive
implications can be concluded:

� Regularization vs. factorization: through comparing the two
models in the cases of recommending items and groups respec-
tively, we found that the factorization model shows better per-
formance when fusing bipartite data (such as user-group
membership and user-item preferences), while the regulariza-
tion model better suits one mode data (such as user-user friend-
ship). It thus demonstrates the two models’ respective merits
and suggests that it should be contingent on the involved data’s
property when choosing the appropriate fusion model.
� Integrating similarity measure: another finding that can also

be suggestive to related researchers is that the similarity mea-
sure that we added into the friendship’s regularization was pro-
ven taking active role. Particularly, the similarity computation
based on user-friend common groups can obviously enable both
item and group recommendations’ accuracy to reach at an
upper level of accuracy.

Thus, by means of exploiting the mutual contributions among
different heterogenous information resources, we identify how to
benefit the three types of recommendation (items, groups, and
friends) simultaneously. The work has practical meaning to the cur-
rent online social media, in terms of meeting users’ increasing
needs of receiving different kinds of recommendation in a single
platform. In the future, on one hand, we will continue to find
real-scenario datasets to test the algorithms. On the other hand,
we will endeavor to further improve the friend recommendation’s
accuracy. As a matter of fact, the limited improvement implies that
there is still room to improve the matrix factorization based meth-
ods by adopting the advantages of other techniques, such as link
prediction (Backstrom & Leskovec, 2011).
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